By W. James Gauderman, Robert Urman, Edward Avol, Kiros Berhane, Rob McConnell, Edward Rappaport, Roger Chang, Fred Lurmann, Frank Gilliland
The New England Journal of Medicine
2015
Air-pollution levels have been trending downward progressively over the past several decades in southern California, as a result of the implementation of air quality–control policies. We assessed whether long-term reductions in pollution were associated with improvements in respiratory health among children.
By Fred Lurmann, Ed Avol, Frank Gilliland
Journal of the Air & Waste Management Association
2015
To assess accountability and effectiveness of air regulatory policies, we reviewed over 20 years of monitoring data, emissions estimates, and regulatory policies across several Southern California communities participating in a long-term study of children’s health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower-pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, was generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards.