
Environ. Res. Lett. 11 (2016) 124027 doi:10.1088/1748-9326/11/12/124027

LETTER

Investigating the climate impacts of urbanization and the potential
for cool roofs to counter future climate change in Southern California

PVahmani1, F Sun2,3, AHall3 andGBan-Weiss1
1 Department of Civil and Environmental Engineering, University of SouthernCalifornia, Los Angeles, CA,USA
2 Department ofGeosciences, University ofMissouri-Kansas City, Kansas City,MO,USA
3 Department of Atmospheric andOceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095,USA

E-mail: banweiss@usc.edu

Keywords: Los Angeles, urban heat island, global climate change, urbanization, cool roofs,mitigation and adaptation, land cover change

Supplementarymaterial for this article is available online

Abstract
The climatewarming effects of accelerated urbanization alongwith projected global climate change
raise an urgent need for sustainablemitigation and adaptation strategies to cool urban climates. Our
modeling results show that historical urbanization in the Los Angeles and SanDiegometropolitan
areas has increased daytime urban air temperature by 1.3 °C, in part due to aweakening of the onshore
sea breeze circulation.We find thatmetropolis-wide adoption of cool roofs canmeaningfully offset
this daytimewarming, reducing temperatures by 0.9 °C relative to a casewithout cool roofs.
Residential cool roofs were responsible for 67%of the cooling. Nocturnal temperature increases of
3.1 °C fromurbanizationwere larger than daytimewarming, while nocturnal temperature reductions
from cool roofs of 0.5 °Cwereweaker than corresponding daytime reductions.We further show that
cool roof deployment could partially counter the local impacts of global climate change in the Los
Angelesmetropolitan area. Assuming a scenario inwhich there are dramatic decreases in greenhouse
gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from
global change relative to current climate are similarly reduced by cool roofs from1.4 °C to 0.6 °C.
Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-
centurywarming is significantly reduced by cool roofs from2.0 °C to 1.0 °C. The end-century
warming, however, is significantly offset only in small localized areas containingmostly industrial/
commercial buildings where cool roofs with the highest albedo are adopted.We conclude that
metropolis-wide adoption of cool roofs can play an important role inmitigating the urban heat island
effect, and offsetting near-term local warming from global climate change. Global-scale reductions in
greenhouse gas emissions are the onlyway of avoiding long-termwarming, however.We further
suggest that both climatemitigation and adaptation can be pursued simultaneously using ‘cool
photovoltaics’.

Introduction

An important consequence of urbanization is the
urban heat island (UHI), defined as a rise in tempera-
tures over urban areas relative to surrounding rural
areas (Tran et al 2006, Santamouris 2007). This well-
documented effect is linked to degraded thermal
comfort (Pantavou et al 2011, Lee et al 2012, Mishra
and Ramgopal 2013, Taleghani et al 2016), increased
cooling energy use (Hassid et al 2000, Fung et al 2006,

Kolokotroni et al 2007, Hirano and Fujita 2012,
Salamanca et al 2013), deterioration of air quality
(Huizenga et al 2006, Sarrat et al 2006, Stathopoulou
et al 2008, Nazaroff 2013), and heat-related morbidity
and mortality (Patz et al 2005, Li and Bou-Zeid 2013,
Mishra and Ramgopal 2013). The UHI effect is caused
by land cover change and anthropogenic heat release
as a result of urbanization, both of which alter the
energy balance of the land surface (Oke 1982, Grim-
mond 2007). For example, reduced vegetation cover in
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cities can lead to decreased evaporative cooling. Sur-
face albedo change through urbanization can either
increase or decrease absorbed solar radiation, depend-
ing on the albedo of the natural surface that urbaniza-
tion has replaced. Man-made materials used in urban
areas store more of the Sun’s energy during the day,
compared to vegetation and soil, and release this
stored energy at night, leading to nocturnal warming.
Urbanization also affects the efficiency of convection
over urban surfaces, which in turn alters energy
exchange between the land surface and the atmo-
spheric boundary layer and consequently surface and
near-surface temperatures (Oke 1982, Arnfield 2003,
Grimmond 2007, Zhao et al 2014). Finally, anthropo-
genic heat release contributes to temperature increases
by introducing an additional energy source to the
lower atmosphere.

Under the pressing challenges of accelerated urba-
nization and projected global-scale climate change,
there is an urgent need for sustainable mitigation and
adaptation strategies that can cool urban climates.
Among the proposed strategies, solar reflective roofs
(hereafter referred to as ‘cool roofs’) have gained broad
acceptance as a promising approach to mitigate UHI
effects (Doulos et al 2004, Akbari and Levinson 2008,
Taha 2008a, 2008b, Millstein andMenon 2011, Santa-
mouris et al 2011, Akbari and Matthews 2012,Stone
et al 2012, Georgescu et al 2013, 2014, Taha 2013, Li
and Bou-Zeid 2014, Li et al 2014, Santamouris 2014,
Ban-Weiss et al 2015a, 2015b). Over the past decades,
several studies have illustrated the potential efficacy of
cool roofs to reduce indoor and outdoor temperatures
(see reviews by Santamouris 2014 and Yang et al 2015),
decrease cooling loads (Santamouris 2014), avoid
heat-related mortality (Stone et al 2014), and lead to
negative global radiative forcing with the potential of
offsetting billions of tons of CO2 emission (Akbari
et al 2008, Akbari et al 2012). On the other hand, a
recent review study showed that the effectiveness of
cool roofs can depend on many city-specific factors
including meteorological and geographical conditions
and building characteristics (Yang et al 2015).

In this study, we first characterize the impacts of
historical urbanization on the climate of the Los
Angeles and San Diego metropolitan regions, the sec-
ond and seventieth largest metropolitan areas in the
United States (USCensus Bureau 2016). This is carried
out by comparing the simulated current climate of
Southern California with a scenario that assumes the
likely land cover of the region prior to widespread
urbanization. As a widely discussed UHI mitigation
strategy, we next compare the cooling effects of three
phases of cool roof implementation over Industrial/
Commercial, Residential, and both Residential and
industrial/commercial areas. An important question
is whether, and to what extent, the cooling effects of
implemented cool roofs can potentially offset future
local warming associated with global climate change.
To illustrate the relative effectiveness of cool roofs, we

compare cool roof-induced cooling with projected
mid- and end-of-century surface air warming asso-
ciated with large-scale global climate change over the
LosAngelesmetropolitan area.

This is the first study to (a) quantify the impact of
historical urbanization on the climate of Southern
California metropolitan areas and (b) assess the effec-
tiveness of cool roofs in the context of both urbaniza-
tion and global climate change. We further discuss the
prospect of highly efficient and solar reflective photo-
voltaics (‘cool PV’) to be used for both climate change
mitigation and adaptation. This study relies on an
advanced regional climatemodeling framework that is
enhanced with urban parameterizations and current
urban land cover/characteristics datasets. This study
is also unique in the way that it takes advantage of real-
time and high-resolution remotely sensed informa-
tion, not only to characterize the modeled urban sur-
faces in their current state, but also to quantify the
physical characteristics of current natural lands in and
around the Los Angeles and San Diego basins as a
proxy for the natural land cover that existed through-
out the basin prior towidespread urbanization.

Materials andmethods

Climatemodel
We use a satellite-supported version of the Weather
Research and Forecasting model (WRF) (Skamarock
and Klemp 2008, Skamarock et al 2008) to simulate
the climate of an area of 72 000 km2, centered over
Southern California (figure 1). WRF is a state-of-the-
art, fully compressible, non-hydrostatic, mesoscale
numerical weather prediction model. In the current
studywe extend the capabilities ofWRFby incorporat-
ing satellite-based real-time high-resolution surface
physical characteristics including albedo, green vege-
tation fraction (GVF), and LAI.WRF is coupled with a
single-layer urban canopy model (UCM) that treats
urban physical processes (Kusaka et al 2001, Kusaka
and Kimura 2004). The UCM calculates the surface
energy balance for urban surfaces, accounting for the
three-dimensional nature of urban surfaces as well as
shadowing, reflections, trapping of radiation, and
wind profiles inside a street canyon (Chen et al 2011).
A detailed description of the WRF-UCM initial and
boundary conditions as well as physics parameteriza-
tions is included in the supplementary information.

Satellite-based land surface characteristics
Albedo plays an important role in the surface energy
dynamics by defining the amount of solar radiation
reflected from the surface (Dickinson 1983,
Dobos 2003, Cedilnik et al 2012). GVF and LAI are also
key parameters that control the partitioning of eva-
porative flux into bare-soil evaporation and vegetation
evapotranspiration (Chen and Dudhia 2001). The
WRF has built-in options to define albedo relying
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either on land cover dependent tabulated values or
five-year mean (1985–1990) climatological data from
the advanced very high resolution radiometer
(AVHRR) (Gutman and Ignatov 1998, Csiszar and
Gutman 1999) with spatial resolution of 0.144°. For
GVF, the model provides two options of using mean
climatological data from AVHRR (1985–1990) or
moderate-resolution imaging spectroradiometer
(MODIS) (2001–2010). Furthermore, WRF by default
relies on land cover dependent tabulated values to
estimate LAI. In recent versions, an option to utilize
MODIS-based climatological (mean over 2001–2010)
LAI is also included. Despite the advantages of adding
MODIS-based data, the built-in climatological repre-
sentation of critical land surface characteristics (e.g.

albedo, GVF, and LAI) does not reflect the reality of
the land surface state for a given year. To overcome
this shortcoming, in the current study we improve the
representation of urban surface physical characteris-
tics in WRF by incorporating satellite-based real-time
high-resolution albedo, GVF, and LAI (figures 2(a)–
(c)). We use MODIS observations to replace default
climatological maps and tabulated values. MODIS
data are obtained from the US Geological Survey
(USGS) National Center for Earth Resource Observa-
tions and Science (EROS) website at http://
earthexplorer.usgs.gov. We generate domain-specific
real-time monthly maps of albedo, GVF, and leaf area
index (LAI) based onMODIS reflectance (MCD43A4),
vegetation indices (MOD13A3), and fraction of

Figure 1.Maps showing (a)geographical representation of the three nestedWRF-UCMdomains with 18, 6, and 2 km resolution for
d3, d2, and d1, respectively, and (b) dominant land cover types per grid cell for the innermost domain d1. The dashed line represents
the area for which the results are illustrated throughout this study.

Figure 2.GVF, LAI, albedo, and land use/covermaps for present-day (top row) and no-urban (bottom row) based on real-time
MODIS data. For no-urban, theGVF, LAI, and albedo values over urban surfaces are updated using information from surrounding
shrub areas and the inverse distanceweighting approach. Results are presented for themonth of July.
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photosynthetically active radiation (MCD15A3) pro-
ducts, respectively. These maps are re-gridded to the
WRF-UCM spatial resolution (2 km) and coordinate
system.

A perhaps even more important limitation with
the standard version of WRF-UCM is that the per-
vious portions of urban grid-cells are assigned with
unvarying and predefined GVF and albedo values
(Vahmani and Ban-Weiss 2016a). Thus, any hetero-
geneity in vegetation within urban areas cannot be
resolved. In this study, we remove this simplifying
assumption and use high-resolution, real-time remote
sensing data to replace these constant predefined
values. A detailed description of the satellite-sup-
ported WRF-UCM and the implemented remotely
sensed land surface characteristics is presented in a
previous study by the authors (Vahmani and Ban-
Weiss 2016a).

Model validation
The authors have published an extensive validation of
the utilized satellite-supported WRF-UCM modeling
framework (Vahmani and Ban-Weiss 2016a). The
WRF-UCM performance is validated using satellite-
based land surface temperatures as well as ground
observations of near-surface air temperature and
evapotranspiration. It is reported (Vahmani and Ban-
Weiss 2016a) that the predictive capabilities of the
WRF-UCM is improved over the Los Angeles metro-
politan region after incorporation of realistic satellite-
based representation of aforementioned land surface
characteristics. For example, the root-mean-square
difference between simulated and observed nocturnal
surface air temperatures is reduced by about 50%.

Model simulations
To investigate the UHI and the climate impacts of cool
roof adoption, we carry out a series of ensemble-based
simulations representing present-day (control), no-
urban, and cool-roof scenarios. For cool-roof, cool
roofs are implemented over all the buildings within
the study domain. We further conduct simulations
that limit cool roof adoption to only residential (cool-
roof-R) and industrial/commercial (cool-roof-I/C)
buildings to assess the relative importance of each
building type in reducing urban temperatures. All
simulations are carried out using three (two-way)
nested grids, centered over Southern California with
30 vertical layers and horizontal resolutions of 18 km,
6 km and 2 km, respectively (figure 1). The simula-
tions are carried out from 29 June, 0700UTC (12:00
am local standard time) to 31 July, 0700UTC (12:00
am local standard time) for 2010, 2011, and 2012,
including a spin-up of 24 h.We focus on urban climate
during the month of July, when the 17 million
residents of the Los Angeles and San Diego metropoli-
tan areas (USCensus Bureau 2016) are exposed to high
heat-related stress levels (Akbari et al 2001). All

simulations utilize the enhanced satellite-supported
WRF that allows for real-time MODIS-based repre-
sentation of GVF, LAI, and albedo (see Vahmani and
Ban-Weiss (2016a) for details). The present-day and
cool-roof simulations, which include urban surfaces,
also incorporate urban irrigation (see supplemental
information for details). For realistic representation of
cool roof adoption over residential versus non-resi-
dential areas, the urban type (i.e. low intensity
residential, high intensity residential, or industrial/
commercial) and urban fraction of each grid-cell is
determined based on the very high-resolution (30 m)
National Land Cover Database (NLCD) (Fry
et al 2011) and NLCD impervious surface data
(Wickham et al 2013), respectively. The urban classifi-
cation (residential versus non-residential) is deter-
mined based on the dominant urban class in each
model grid-cell.

To quantify the significance of simulated results,
we use the two-sided Student’s t test to statistically
compare urbanization and cool roof induced changes
with the natural fluctuations associated with the cli-
mate system and the model internal variability. We
only include differences that are statistically significant
at the 95% confidence interval, relative to the daily
variations in the multiyear ensemble members for
each grid-cell. The areas with non-significant signals
are excluded from themaps presented in this study.

Calculation ofUHI
The UHI is typically characterized by comparing
temperatures within urban areas to surrounding rural
areas. Estimating theUHI in the Los Angelesmetropo-
litan area is particularly difficult due to the lack of
surrounding rural areas (Roth et al 1989, Witiw and
LaDochy 2008, Vahmani and Ban-Weiss 2016a) as the
metropolitan area is immediately surrounded by
mountain ranges and the Pacific Ocean. To quantify
the UHI we designed a hypothetical land surface
representation (no-urban) that replaces all urban
surfaces with shrubs, the native vegetation to the
region. By comparing the ‘no-urban’ with ‘present-
day’ scenario, we evaluate the UHI as urbanization-
induced temperature changes over the areas that are
presently urban.

For an accurate representation of no-urban land
surface characteristics, we utilize remotely sensed
albedo, GVF, and LAI over grid-cells covered with
shrubs within and surrounding the metropolitan area.
We made use of the inverse distance weighting
approach (Shepard 1968) (with power parameter of 2)
to calculate interpolated albedo, GVF, and LAI values
for grid-cells that are presently urban and are con-
verted to shrub lands in the No-Urban scenario
(figure 2). The present-day shrub areas are cautiously
selected to avoid including information from areas far
from the metropolitan region or with vastly different
characteristics such as high elevation (figure 3).
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Cool roof representation in themodel
To quantify the potential for cool roofs to mitigate the
UHI in the Los Angeles and San Diego metropolitan
areas, we repeat the present-day simulations but
increase building roof albedos to those of cool roofs.
Based on cool roofs that are currently commercially
available, we assume albedos of 0.85 and 0.40 as the
highest achievable ‘aged’ (i.e. after accounting for
pollution deposition onto the rooftop) values for
industrial/commercial and residential roofs, respec-
tively. (As of November 2016, the Rated Products
Directory of the Cool Roof Rating Council
(CRRC 2016) lists roofing products with aged albedos
as high as 0.87 for field applied elastomeric coatings
designed for low slope roofs, and 0.37 for non-white
cool shingles for residential pitched roofs.) While
residential cool roofs with higher albedos exist when
using white materials, we chose 0.40 as a value
consistent with darker colored roofs that are often the
aesthetic preference of home owners. We emphasize
that the selected albedo for residential buildings is also
consistent with the ‘effective albedo’ of high efficiency
solar photovoltaics (PV) that are currently in develop-
ment. (‘Effective albedo’ is defined as PV reflectance+
PV conversion efficiency.) Future technical improve-
ments in PV design and configuration are expected to
increase PV reflectivity up to values of 10% using
coatings that selectively reflect wavelengths below the
semiconductor material’s bandgap (Nemet 2009, Pro-
togeropoulos and Zachariou 2010). The solar conver-
sion efficiency of PV systems is also anticipated to
reach up to 0.30, meaning the effective albedo of solar
PV panels would reach up to 0.40 (Nemet 2009 and
Taha 2013). Thus, the residential cool roof albedos
chosen are consistent with a scenario involving adop-
tion of high efficiency PV. A few previous studies have
investigated the climatic impacts of widespread imple-
mentation of solar PV’s at regional scale (Millstein and
Menon 2011, Taha 2013, Salamanca et al 2016).

Futurewarming projections
We use a hybrid downscaling technique, reported by
Walton et al (2015), to downscale mid-century

(2041–60) and end-century (2081–2100) temperature
changes, relative to a baseline period (1981–2000). The
results are presented for two representative concentra-
tion pathways (RCPs) (Moss et al 2008, Meinshausen
et al 2011, Taylor et al 2012). One (RCP2.6) corre-
sponds to a dramatic (and probably unrealistic) slow-
down in greenhouse gas emissions over the next few
decades. The other (RCP8.5) is associated with con-
tinued emissions increases throughout the century.
The land use/cover remains the same as the baseline
for both pathways. Projections from all global climate
models fromCoupledModel Intercomparison Project
Phase 5 (CMIP5) are included in this analysis. The
projected warming signals, averaged over the month
of July, are compared with our simulated climate
impacts of cool roofs over the Los Angeles metropoli-
tan area at a common resolution of 2 km. A detailed
description of the warming projections can be found
in Sun et al (2015).

Results

Impact of urbanization in SouthernCalifornia
Urbanization in Southern California (including both
the Los Angeles and San Diego metropolitan areas) is
simulated to increase the daytime (2 pm) near-surface
(2 m) air temperature (hereafter referred to as air
temperature) by 1.3 °C, averaged over urban parts of
the region during themonth of July (figure 4(a)).More
significant warming of 3.1 °C is evident at night
(10 pm) (figure 4(b)). Similarly, urbanization causes a
significant increase in nocturnal land surface temper-
ature (hereafter referred to as surface temperature) of
6.1 °C (figure 4(d)). Daytime surface temperature,
however, undergoes a substantial cooling of 7.7 °C,
induced by urbanization (figure 4(c)). The nocturnal
warming of air and surface temperatures are associated
with the high heat capacity of man-made materials
such as concrete, which enables urban surfaces to store
energy during the day and release it at night. Further-
more, a recent study (Vahmani and Ban-Weiss 2016b)
reported that increased irrigation can potentially lead

Figure 3.Ortho-imagery and land use/covermaps. The red lines illustrate the extent of the urban regions of the Los Angeles and San
Diegometropolitan areas. The areas between the red and black lines show grid-cells currently coveredwith shrubs within and
surrounding themetropolitan area that are used to estimate albedo, GVF, and LAI of shrub lands in no-urban.
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to warming during the night as increased soil moisture
alters the soil thermal properties to favor increased
nocturnal upward ground heat fluxes. The daytime
surface temperature cooling induced by urbanization
can be explained by the addition of urban surfaces with
high heat capacity, which reduces diurnal variability in
surface temperatures, along with the evaporative cool-
ing effects of urban irrigation.

Despite the cooling of the surface (figure 4(c)), and
the urban irrigation induced shift in the partitioning of
surface energy toward higher latent heat flux and
lower sensible heat flux (supplementary figure S1),
implementing the present-day urban surfaces leads to
a significant warming of daytime air temperature
(figure 4(a)). Our analysis shows that the aforemen-
tioned surface cooling and urban irrigation effects are

overwhelmed by the atmospheric warming response
that is induced partially by a weakening of the daytime
onshore sea breeze circulation, which cools the region
in the afternoon (Vahmani and Ban-Weiss 2016a).
Urbanization results in substantially increased surface
roughness lengths (supplementary figure S2) and con-
sequently increased surface friction that slows down
the advection of cooler maritime air over land and
removal of warm air out of the basin (figure 5). The
average daytime (2 pm) wind speed over the urban
areas is reduced by 1.9 m s−1 over the month of July
due to urbanization. This finding is important as it was
previously thought that ‘rougher’ urban surfaces, rela-
tive to rural lands, have a cooling effect via enhanced
convection efficiency (Oke 1982, Arnfield 2003, Zhao
et al 2014). Our analysis shows that the opposite

Figure 4. Simulated two-meter air (a, b) and surface temperature (c, d) differences induced by the urban heat island (present-day
minus no-urban). Values representmean temperature changes over July 2010, 2011, and 2012 at 2 pm (a, c) and 10 pm (b, d). The
black lines illustrate the extent of the urban regions of the Los Angeles and SanDiegometropolitan areas. DowntownLos Angeles,
Riverside, and the San FernandoValley (S. F. Valley) are labeled in (a). Only changes that are statistically distinguishable from zero at
95% confidence interval are shown.
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occurs in a coastal city that benefits from a cooling sea
breeze; buildings increase surface friction and conse-
quently impair the cooling onshore sea breeze circula-
tion. The spatial variation in daytime air temperature
warming (figure 4(a)) further indicates that urbaniza-
tion has a stronger effect on the western portion of the
Los Angeles basin that receives directly maritime air
due to the sea breeze compared to the inland eastern
basin (e.g. Riverside) or regions blocked by the moun-
tains (e.g. San Fernando Valley). The mean temper-
ature changes induced by urbanization for various
regions in Southern California are presented in the
supplementary information (table S1).

Our results also show that urbanization in South-
ern California metropolitan areas have significantly
increased nighttime boundary layer heights and
reduced nocturnal cloudiness near the ground surface
layer (supplementary figure S3). These results support
the findings of an observational study (Williams
et al 2015) in coastal Southern California that reported
that urbanization can induce nocturnal warming and
increase the near surface dew point depression, the
altitude of condensation, and cloud base height, con-
sequently decreasing fog frequency.

Effectiveness of cool roofs versus urbanization
impacts
Cool roof adoption for all building types (cool-roof)
leads to a reduction of daytime air temperature by
0.9 °C, averaged over the metropolitan areas in South-
ern California during the month of July (figure 6(a)).
Our analysis shows that cool roof adoption on
residential buildings contributes to a significant por-
tion (67% or 0.6 °C) of the cooling signal over the
metropolitan area (figure 6(b)). The local cooling
effects of industrial/commercial cool roofs are higher
in magnitude, due to their higher roof albedos
compared to residential cool roofs, and typically

higher urban fractions compared to residential areas.
However, this cooling response is confined to rela-
tively small regions (figure 6(c)). Our results suggest
that cool roofs on residential buildings would con-
tribute more to city-wide cooling than industrial/
commercial buildings. This is significant since areas
such as the San Fernando Valley and Riverside, which
aremostly comprised of residential homes and contain
fewer industrial/commercial buildings (relative to
downtown Los Angeles), have the highest baseline
temperatures in the Los Angeles metropolitan area
(supplementary figure S4). These elevated baseline
temperatures are due to minimal cooling impacts of
the sea breeze, which is blocked by the Santa Monica
mountain range southwest of the San FernandoValley,
and impaired by the large distance between the Pacific
Ocean and Riverside. It is noteworthy that our results
corroborate the findings of a previous study
(Taha 1997), one of the first to report on the potential
of high-albedo materials as an effective measure to
cool urban climates at regional scale. The mentioned
study reported local cooling signals of up to 2 °C and
4.5 °C as a result of urban surface albedo increases of
0.15 and 0.30, respectively, on a late-August day in the
LosAngelesmetropolitan area.

Our results show that citywide adoption of cool
roofs could be a viable way to meaningfully offset the
daytime UHI effect in Southern California metropoli-
tan areas by reducing the urbanization induced warm-
ing of 1.3 °C (figure 4(a)) by 0.9 °C (figure 6(a)).
During nighttime, however, the mean air temperature
reductions induced by cool roofs are smaller than day-
time reductions. The mean nocturnal cooling from
cool roof implementation over both residential and
industrial/commercial, only residential, and only
industrial/commercial buildings are 0.5 °C, 0.4 °C,
and 0.1 °C, respectively (supplementary figure S5).
The nocturnal cooling impacts of cool roofs are

Figure 5. Simulated 10 mwind vectors over elevationmap. The simulated 10 mwind vectors for (a)no-urban, (b) present-day, and
(c) the difference (present-day—no-urban). The values represent wind vectors averaged over July 2010, 2011, and 2012 at 2 pm. The
black lines illustrate the extent of urban areas. Themeanwind speed at 2 pmover the urban areas is reduced by 1.9 m s−1 due to
urbanization.
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significant since UHI induced high nocturnal tem-
peratures reduce residents’ ability to recover from hot
daytimes, and cool down before the next day’s expo-
sure, increasing risk to public health (CAT (California
Climate Action Team) 2013, Kalkstein et al 2013). This
important effect of cool roofs on the nighttime climate
of Southern California metropolitan areas is asso-
ciated with reduced daytime heat storage in urban sur-
faces and consequently reduced release of stored heat
during night.

The mean temperature changes induced by cool
roofs for various regions in Southern California are
presented in the supplementary information (table
S1). Note that temperature reductions in inland cities
are due to the climate impacts of cool roofs within the
city, and also include additional contributions from
cool roofs in upwind locations.

Effectiveness of cool roofs for countering local
impacts of future climate change
To gain further insight into the mitigation and
adaptation potential of cool roofs, we compare the
diurnal mean temperature change induced by cool
roofs versus the projected future near-surface air
temperature increases over the Los Angeles metropo-
litan area for the month of July under global climate
change. Mid- and end-of-century projected warming
are considered for two greenhouse gas forcing scenar-
ios. One (RCP2.6) corresponds to a dramatic slow-
down in greenhouse gas emissions over the next
decades while the other (RCP8.5) is associated
with continued emissions increases throughout
the century. The spatial distributions of projected
mid- and end-of-century warming for the two scenar-
ios are presented in the supplementary information
(figure S6).

Our analysis of the residual warming attributed to
climate change after cool roof implementation shows
that cool roofs substantially reduce mid- and end-of-
century diurnal average warming (relative to current
climate) under RCP2.6 (from 1.4 °C to 0.6 °C, aver-
aged over the urban portions of the region for Julys)
(figures 7(a) and (c)). Under the RCP8.5 scenario,
mid-century warming is also significantly offset by
cool roofs (from 2.0 °C to 1.0 °C) (figure 7(b)). The
end-century warming (relative to current climate)
under the business as usual (RCP8.5) scenario, how-
ever, remains large (2.5 °C), even after cool roof
implementation (figure 7(d)). This highlights the fact
that cool roofs can only provide a meaningful reduc-
tion in urban temperatures over the coming few dec-
ades, and the necessity for global-scale greenhouse gas
emission reductions for longer term regional climate
stability. However, the implementation of industrial/
commercial (see figure 1(b)) cool roofs show the capa-
city to locally counter warming signals under RCP8.5
through the end of century (see figure 7(d)). The local
residual warming is negligible over the industrial/
commercial areas, where the cool roofs with highest
albedo are adopted; the increase in grid-cell level
albedo in these areas is up to 0.29 (supplementary
figure S7).

Discussion and conclusions

This study suggests that city-wide adoption of cool
roofs, with currently available technologies, on both
residential and industrial/commercial buildings can
play an important role in mitigating the UHI effect,
and offsetting near-term local warming from global
climate change. Given the large role of residential cool
roofs in reducing urban temperatures, we suggest

Figure 6. Simulated air temperature differences. Simulated air temperature changes induced by (a) cool roofs on residential and
industrial/commercial buildings (cool-roof), (b) cool roofs on residential homes (cool-roof-R), and (c) cool roofs adopted on
industrial/commerical buildings (cool-roof -I/C), relative to present-day. Values represent average temperature changes over July
2010, 2011, and 2012 at 2 pm. The black lines illustrate the extent of the urban regions of the Los Angeles and SanDiegometropolitan
areas. Downtown LosAngeles, Riverside, and San FernandoValley (S. F. Valley) are labeled in (a). Only changes that are statistically
distinguishable from zero at 95% confidence interval are shown.
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future efforts to increase the albedo of residential cool
roofs while maintaining desirable aesthetics andmini-
mizing any cost differentials relative to standard roofs.

While we have shown that solar reflective cool
roofs can counter near-term climate change, we have
alsomade the point that longer term regional (and glo-
bal) climate stability necessitates large-scale reduc-
tions in greenhouse gas emissions. Given that rooftops
can house PV that produce carbon-free energy, use of
rooftops for climate change mitigation (i.e. PV) versus
adaptation (i.e. cool roofs)may seem at odds. We sug-
gest, however, that both could be adopted simulta-
neously on residential roofs, especially with future
technology development that maximizes solar conver-
sion efficiency in the photoactive portion of the
solar spectrum while reflecting wavelengths not
used for electricity conversion. In this way, electricity
production and air temperature reductions could
be maximized by ‘cool PV’, allowing for both

climate mitigation and adaptation to be pursued
simultaneously.
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