Absolute Calibration of a UAV-Mounted Ultra-Wideband Software-Defined Radar Using an External Target in the Near-Field

Posted on by Stephen Gee

We describe a method to calibrate a Software-Defined Radar (SDRadar) system mounted on an uncrewed aerial vehicle (UAV) with an ultra-wideband (UWB) waveform operated in the near-field region. Radar calibration is a prerequisite for using the full capabilities of the radar system to retrieve geophysical parameters accurately. We introduce a framework and process to calibrate the SDRadar with the UWB waveform in the 675 MHz–3 GHz range in the near-field region. Furthermore, we present the framework for computing the near-field radar cross section (RCS) of an external passive calibration target, a trihedral corner reflector (CR), using HFSS software and with consideration for specific antennas. The calibration performance was evaluated with various distances between the calibration target and radar antennas. The necessity for the knowledge of the near-field RCS to calibrate SDRadar was demonstrated, which sets this work apart from the standard method of using a trihedral CR for backscatter radar calibration. We were able to achieve approximately 0.5 dB accuracy when calibrating the SDRadar in the anechoic chamber using a trihedral CR. In outdoor field conditions, where the ground rough surface scattering effects are present, the calibration performance was lower, approximately 1.5 dB. A solution is proposed to overcome the ground effect by elevating the CR above the ground level, which enables applying time-gating around the CR echo, excluding the reflection from the ground.

Comments are closed.